Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: covidwho-2278780

ABSTRACT

The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Macaca mulatta , Ferrets , Lactams , Leucine , Nitriles , Antiviral Agents
2.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1846631

ABSTRACT

The recent emergence of the SARS-CoV-2 Omicron variant of concern (VOC), which contains a heavily mutated spike protein capable of escaping preexisting immunity, identifies a continued need for interventional measures. Molnupiravir (MK-4482), an orally administered nucleoside analog, has demonstrated efficacy against earlier SARS-CoV-2 lineages and was recently approved for SARS-CoV-2 infections in high-risk adults. Here, we assessed the efficacy of MK-4482 against the earlier Alpha, Beta, and Delta VOCs and Omicron in the hamster COVID-19 model. Omicron replication and associated lung disease in vehicle-treated hamsters was reduced compared with replication and lung disease associated with earlier VOCs. MK-4482 treatment inhibited virus replication in the lungs of hamsters infected with Alpha, Beta, or Delta VOCs. Importantly, MK-4482 profoundly inhibited virus replication in the upper and lower respiratory tract of hamsters infected with the Omicron VOC. Consistent with its mutagenic mechanism, MK-4482 treatment had a more pronounced inhibitory effect on infectious titers compared with viral RNA genome load. Histopathologic analysis showed that MK-4482 treatment caused a concomitant reduction in the level of lung disease and viral antigen load in infected hamsters across all VOCs examined. Together, our data indicate the potential of MK-4482 as an effective antiviral against known SARS-CoV-2 VOCs, especially Omicron, and likely future SARS-CoV-2 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Cricetinae , Cytidine/analogs & derivatives , Humans , Hydroxylamines
3.
Microorganisms ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1706054

ABSTRACT

As the COVID-19 pandemic moves into its third year, there remains a need for additional animal models better recapitulating severe COVID to study SARS-CoV-2 pathogenesis and develop countermeasures, especially treatment options. Pigs are known intermediate hosts for many viruses with zoonotic potential and are susceptible to infection with alpha, beta and delta genera of coronaviruses. Herein, we infected young (3 weeks of age) pigs with SARS-CoV-2 using a combination of respiratory and parenteral inoculation routes. Pigs did not develop clinical disease, nor macroscopic or microscopic pathologic lesions upon SARS-CoV-2 infection. Despite occasional low levels of SARS-CoV-2 genomic RNA in the respiratory tract, subgenomic RNA and infectious virus were never found, and SARS-CoV-2-specific adaptive immune responses were not detectable over the 13-day study period. We concluded that pigs are not susceptible to productive SARS-CoV-2 infection and do not serve as a SARS-CoV-2 reservoir for zoonotic transmission.

4.
Cell Rep ; 38(11): 110515, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1705950

ABSTRACT

Human cases of SARS-CoV-2 reinfection have been documented throughout the pandemic, but are likely under-reported. In the current study, we use the Syrian hamster SARS-CoV-2 model to assess reinfection with homologous WA1 and heterologous B.1.1.7 (Alpha) and B.1.351 (Beta) SARS-CoV-2 variants over time. Upon primary infection with SARS-CoV-2 WA1, hamsters rapidly develop a strong and long-lasting humoral immune response. After reinfection with homologous and heterologous SARS-CoV-2 variants, this immune response protects hamsters from clinical disease, virus replication in the lower respiratory tract, and acute lung pathology. However, reinfection leads to SARS-CoV-2 replication in the upper respiratory tract with the potential for virus shedding. Our findings indicate that reinfection results in restricted SARS-CoV-2 replication despite substantial levels of humoral immunity, denoting the potential for transmission through reinfected asymptomatic individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , Nose , Reinfection
5.
Emerg Microbes Infect ; 10(1): 2173-2182, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1493581

ABSTRACT

The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, we compared African green monkeys infected intranasally with either the UK B.1.1.7 (Alpha) variant or its contemporary D614G progenitor. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases.


Subject(s)
COVID-19/virology , Chlorocebus aethiops/virology , Respiratory System/virology , Virus Replication , Virus Shedding , Administration, Intranasal , Animals , COVID-19/epidemiology , Gastrointestinal Tract/virology , Host Specificity , Polymorphism, Single Nucleotide , RNA, Viral/isolation & purification , Random Allocation , Rectum/virology , United Kingdom/epidemiology , Vero Cells , Viral Load
6.
Nat Commun ; 12(1): 2295, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1189225

ABSTRACT

The COVID-19 pandemic progresses unabated in many regions of the world. An effective antiviral against SARS-CoV-2 that could be administered orally for use following high-risk exposure would be of substantial benefit in controlling the COVID-19 pandemic. Herein, we show that MK-4482, an orally administered nucleoside analog, inhibits SARS-CoV-2 replication in the Syrian hamster model. The inhibitory effect of MK-4482 on SARS-CoV-2 replication is observed in animals when the drug is administered either beginning 12 h before or 12 h following infection in a high-risk exposure model. These data support the potential utility of MK-4482 to control SARS-CoV-2 infection in humans following high-risk exposure as well as for treatment of COVID-19 patients.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Hydroxylamines/administration & dosage , SARS-CoV-2/drug effects , Virus Replication/drug effects , Administration, Oral , Animals , COVID-19/virology , Chlorocebus aethiops , Cytidine/administration & dosage , Disease Models, Animal , Humans , Mesocricetus , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vero Cells
7.
Emerg Microbes Infect ; 9(1): 2673-2684, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-949517

ABSTRACT

Following emergence in late 2019, SARS-CoV-2 rapidly became pandemic and is presently responsible for millions of infections and hundreds of thousands of deaths worldwide. There is currently no approved vaccine to halt the spread of SARS-CoV-2 and only very few treatment options are available to manage COVID-19 patients. For development of preclinical countermeasures, reliable and well-characterized small animal disease models will be of paramount importance. Here we show that intranasal inoculation of SARS-CoV-2 into Syrian hamsters consistently caused moderate broncho-interstitial pneumonia, with high viral lung loads and extensive virus shedding, but animals only displayed transient mild disease. We determined the infectious dose 50 to be only five infectious particles, making the Syrian hamster a highly susceptible model for SARS-CoV-2 infection. Neither hamster age nor sex had any impact on the severity of disease or course of infection. Finally, prolonged viral persistence in interleukin 2 receptor gamma chain knockout hamsters revealed susceptibility of SARS-CoV-2 to adaptive immune control. In conclusion, the Syrian hamster is highly susceptible to SARS-CoV-2 making it a very suitable infection model for COVID-19 countermeasure development.


Subject(s)
COVID-19/etiology , Disease Models, Animal , SARS-CoV-2 , Animals , COVID-19/immunology , COVID-19/pathology , Chlorocebus aethiops , Cricetinae , Disease Susceptibility , Female , Lung/pathology , Male , Mesocricetus , RNA, Viral/analysis , Receptors, Interleukin-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
8.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: covidwho-890008

ABSTRACT

We remain largely without effective prophylactic/therapeutic interventions for COVID-19. Although many human COVID-19 clinical trials are ongoing, there remains a deficiency of supportive preclinical drug efficacy studies to help guide decisions. Here we assessed the prophylactic/therapeutic efficacy of hydroxychloroquine (HCQ), a drug of interest for COVID-19 management, in 2 animal disease models. The standard human malaria HCQ prophylaxis (6.5 mg/kg given weekly) and treatment (6.5 mg/kg given daily) did not significantly benefit clinical outcome, nor did it reduce SARS-CoV-2 replication/shedding in the upper and lower respiratory tract in the rhesus macaque disease model. Similarly, when used for prophylaxis or treatment, neither the standard human malaria dose (6.5 mg/kg) nor a high dose (50 mg/kg) of HCQ had any beneficial effect on clinical disease or SARS-CoV-2 kinetics (replication/shedding) in the Syrian hamster disease model. Results from these 2 preclinical animal models may prove helpful in guiding clinical use of HCQ for prophylaxis/treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Hydroxychloroquine/therapeutic use , SARS-CoV-2/drug effects , Animals , COVID-19/pathology , COVID-19/prevention & control , Chlorocebus aethiops , Cricetinae , Cytokines/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Lung/virology , Macaca mulatta , Male , Treatment Outcome , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , Virus Shedding/drug effects , COVID-19 Drug Treatment
9.
bioRxiv ; 2020 Sep 27.
Article in English | MEDLINE | ID: covidwho-807634

ABSTRACT

Following emergence in late 2019, SARS-CoV-2 rapidly became pandemic and is presently responsible for millions of infections and hundreds of thousands of deaths worldwide. There is currently no approved vaccine to halt the spread of SARS-CoV-2 and only very few treatment options are available to manage COVID-19 patients. For development of preclinical countermeasures, reliable and well-characterized small animal disease models will be of paramount importance. Here we show that intranasal inoculation of SARS-CoV-2 into Syrian hamsters consistently caused moderate broncho-interstitial pneumonia, with high viral lung loads and extensive virus shedding, but animals only displayed transient mild disease. We determined the infectious dose 50 to be only five infectious particles, making the Syrian hamster a highly susceptible model for SARS-CoV-2 infection. Neither hamster age nor sex had any impact on the severity of disease or course of infection. Finally, prolonged viral persistence in interleukin 2 receptor gamma chain knockout hamsters revealed susceptibility of SARS-CoV-2 to adaptive immune control. In conclusion, the Syrian hamster is highly susceptible to SARS-CoV-2 making it a very suitable infection model for COVID-19 countermeasure development.

10.
Antivir Ther ; 25(4): 223-231, 2020.
Article in English | MEDLINE | ID: covidwho-693301

ABSTRACT

BACKGROUND: As the coronavirus disease 2019 (COVID-19) pandemic grows daily, we remain with no prophylactic and only minimal therapeutic interventions to prevent or ameliorate severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Prior to SARS-CoV-2 emergence, high throughput screens utilizing clinically developed drugs identified compounds with in vitro inhibitory effect on human coronaviruses that may have potential for repurposing as treatment options for COVID-19. However, caution should be applied to repurposing of these drugs when they are taken out of context of human pharmacokinetic parameters associated with normal therapeutic use. METHODS: Our aim was to provide a tier-based scoring system to interrogate this data set and match each drug with its human pharmacokinetic criteria, such as route of administration, therapeutic plasma levels and half-life, tissue distribution and safety. RESULTS: Our analysis excluded most previously identified drugs but identified members of four drug classes (antimalarial amino-quinolones, selective estrogen receptor modulators [SERMs], low potency tricyclic antipsychotics and tricyclic antidepressants) as potential drug candidates for COVID-19. Two of them, the tricyclic antipsychotics and tricyclic antidepressants were further excluded based on a high adverse event profile. CONCLUSIONS: In summary, our findings using a new pharmacokinetic-based scoring system supports efficacy testing of only a minority of candidates against SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2 , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , High-Throughput Screening Assays , Humans
SELECTION OF CITATIONS
SEARCH DETAIL